Saposin C Coupled Lipid Nanovesicles Specifically Target Arthritic Mouse Joints for Optical Imaging of Disease Severity
نویسندگان
چکیده
Rheumatoid arthritis is a chronic inflammatory disease affecting approximately 1% of the population and is characterized by cartilage and bone destruction ultimately leading to loss of joint function. Early detection and intervention of disease provides the best hope for successful treatment and preservation of joint mobility and function. Reliable and non-invasive techniques that accurately measure arthritic disease onset and progression are lacking. We recently developed a novel agent, SapC-DOPS, which is composed of the membrane-associated lysosomal protein saposin C (SapC) incorporated into 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) lipid nanovesicles. SapC-DOPS has a high fusogenic affinity for phosphatidylserine-enriched microdomains on surfaces of target cell membranes. Incorporation of a far-red fluorophore, CellVue Maroon (CVM), into the nanovesicles allows for in vivo non-invasive visualization of the agent in targeted tissue. Given that phosphatidylserine is present only on the inner leaflet of healthy plasma membranes but is "flipped" to the outer leaflet upon cell damage, we hypothesized that SapC-DOPS would target tissue damage associated with inflammatory arthritis due to local surface-exposure of phosphatidylserine. Optical imaging with SapC-DOPS-CVM in two distinct models of arthritis, serum-transfer arthritis (e.g., K/BxN) and collagen-induced arthritis (CIA) revealed robust SapC-DOPS-CVM specific localization to arthritic paws and joints in live animals. Importantly, intensity of localized fluorescent signal correlated with macroscopic arthritic disease severity and increased with disease progression. Flow cytometry of cells extracted from arthritic joints demonstrated that SapC-DOPS-CVM localized to an average of 7-8% of total joint cells and primarily to CD11b+Gr-1+ cells. Results from the current studies strongly support the application of SapC-DOPS-CVM for advanced clinical and research applications including: detecting early arthritis onset, assessing disease progression real-time in live subjects, and providing novel information regarding cell types that may mediate arthritis progression within joints.
منابع مشابه
In Vivo Optical Imaging of Brain Tumors and Arthritis Using Fluorescent SapC-DOPS Nanovesicles
We describe a multi-angle rotational optical imaging (MAROI) system for in vivo monitoring of physiopathological processes labeled with a fluorescent marker. Mouse models (brain tumor and arthritis) were used to evaluate the usefulness of this method. Saposin C (SapC)-dioleoylphosphatidylserine (DOPS) nanovesicles tagged with CellVue Maroon (CVM) fluorophore were administered intravenously. Ani...
متن کاملCancer-selective targeting and cytotoxicity by liposomal-coupled lysosomal saposin C protein.
PURPOSE Saposin C is a multifunctional protein known to activate lysosomal enzymes and induce membrane fusion in an acidic environment. Excessive accumulation of lipid-coupled saposin C in lysosomes is cytotoxic. Because neoplasms generate an acidic microenvironment, caused by leakage of lysosomal enzymes and hypoxia, we hypothesized that saposin C may be an effective anticancer agent. We inves...
متن کاملCancer Therapy: Preclinical Cancer-Selective Targeting and Cytotoxicity by Liposomal-Coupled Lysosomal Saposin C Protein
Purpose: Saposin C is a multifunctional protein known to activate lysosomal enzymes and induce membrane fusion in an acidic environment. Excessive accumulation of lipid-coupled saposin C in lysosomes is cytotoxic. Because neoplasms generate an acidic microenvironment, caused by leakage of lysosomal enzymes and hypoxia, we hypothesized that saposin C may be an effective anticancer agent. We inve...
متن کاملSeminolipid and its precursor/degradative product, galactosylalkylacylglycerol, in the testis of saposin A- and prosaposin-deficient mice.
Sphingolipid activator proteins (saposins A, B, C, and D) are derived from a common precursor protein (prosaposin) and specifically activate in vivo degradation of glycolipids with short carbohydrate chains. A mouse model of prosaposin deficiency (prosaposin-/-) closely mimics the human disease with an elevation of multiple glycolipids. The recently developed saposin A-/- mice showed a chronic ...
متن کاملImaging and Therapy of Pancreatic Cancer with Phosphatidylserine-Targeted Nanovesicles1
Pancreatic cancer remains one of the most intractable cancers, with a dismal prognosis reflected by a 5-year survival of ~6%. Since early disease symptoms are undefined and specific biomarkers are lacking, about 80% of patients present with advanced, inoperable tumors that represent a daunting challenge. Despite many clinical trials, no single chemotherapy agent has been reliably associated wit...
متن کامل